Ⅱ. 統計・確率の基礎知識

リスク計量化の前提となる統計・確率の基礎知識について整理、復習します。

図解中心の説明ですので、統計・確率は苦手だと感じている方も理解度アップに繋がります。

目 次

- 1. 基本統計量(1変量)
- 2. 基本統計量(2変量)
- 3. 確率変数と確率分布
- 4. 推定と検定

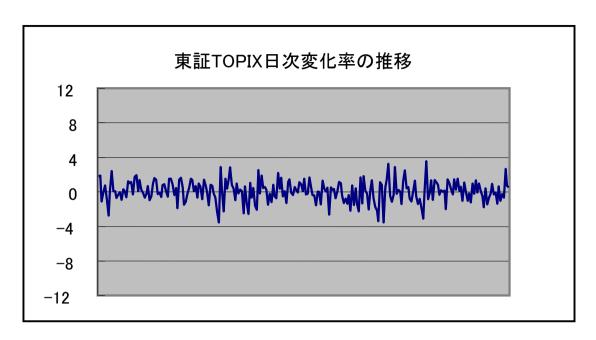
1. 基本統計量(1変量)

- (1) 平 均
- (2) 分 散
- (3) 標準偏差
- (4) パーセント点

講義の中では、以下の観測データを使います。

(例) 東証TOPIX-日次変化率 250個 東証TOPIX-10日間変化率 250個

	東証 指	日次変化	10日 変化	
200X/9/29	1610.73	0.508	7 0.785	
200X/9/28	1602.57	0.722	1.194	
200X/9/27	1591.04	2.651	0.319	
200X/9/26	1549.41	-0.667	-2.994	
200X/9/25	1559.78	-0.245	-3.783	
200X/9/22	1563.60	-1.048	-3.139	
200X/9/21	1580.08	0.629	-3.894	
200X/9/20	1570.18	-1.379	-5.040	
200X/9/19	1591.98	-0.091	-3.538	
200X/9/15	1593.43	-0.295	-2.474	
200X/9/14	1591.04	2.651	0.319	





基本統計	Excel関数	日次変化率	10日間 変化率
データ	COUNT	250	250
平	AVERAGE	0.063	0.656
分	VARA	1.540	14.966
標準偏	STDEVA	1.241	3.869

(設問)

グラフと基本統計量をみて、どんなことに気付きましたか?

(ヒント)

気付いて欲しいことは4つあります。

答えは、講義の中で・・・

(1) 平均

• 平均は、観測データセットの「中心の位置」を示す指標の 1つ。

Excelでは、関数AVERAGE(データ範囲)を使って求める。

(2-i)分 散(記述統計の立場で定義)

- 分散は、観測データセットの「バラツキ」を示す指標の1つ。
 - データの「偏差平方和」(平均との差を2乗して合計)を求めて「データの数」で割る。
 - 一 分散の「単位」は、データの持つ「単位」の2乗。

$$Vp = \sigma^{2} = \frac{\overline{r} - \rho \sigma (\overline{x})}{\overline{r} - \rho \sigma}$$

$$= \frac{(X_{1} - \overline{X})^{2} + (X_{2} - \overline{X})^{2} + \cdots + (X_{N} - \overline{X})^{2}}{N}$$

• Excelでは、関数VARP(データ範囲)を使って求める。。

記述統計: 中学・高校で学習する平均と分散

 平均:中心の位

 観測データ
 3 4 5 6 7

 一〇
 ○

 偏差
 -2 -1 0 1 2 合計すると ゼロ (平均との差)

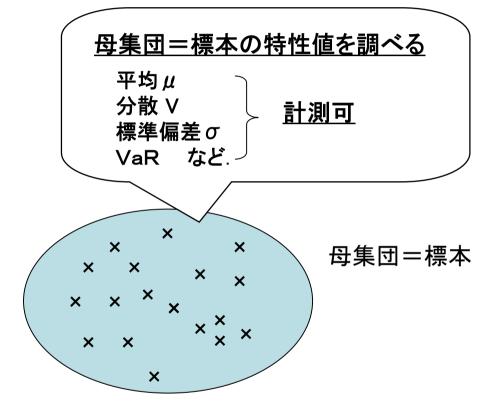
 偏差平方
 (-2)²(-1)² 0² 1² 2² 合計すると 偏差平方和 10

- ▶ 観測データがバラつく(平均から離れる)と偏差平方和は増える。
- ▶ しかし、観測データ数が増えても偏差平方和は増えてしまう。

(参考)記述統計の考え方

- <u>観測データを母集団全体と考えて、</u>統計量の算定を 行い、観測データが持つ特性を分析・記述する。
 - (例)ある特定の集団(N人)の身長の平均と分散を計算する。

平均
$$X_1 + X_2 + \cdots + X_N$$
 $X_1 = \frac{X_1 + X_2 + \cdots + X_N}{N}$ $X_1 = \frac{X_1 + X_2 + \cdots + X_N}{N}$ $Y_2 = \frac{(X_1 - X_1)^2 + (X_2 - X_1)^2 + \cdots + (X_N - X_1)^2}{N}$



(2-ii)分散(推測統計の立場で定義)

- 分散は、観測データセットの「バラツキ」を示す指標の1つ。
 - データの「偏差平方和」(平均との差を2乗して合計)を求めて「データの数-1」で割る。
 - 一 分散の「単位」は、データの持つ「単位」の2乗。

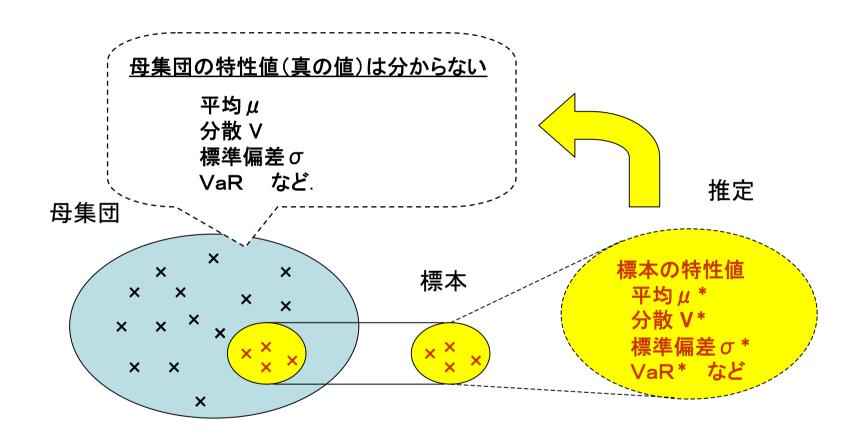
$$Va = \sigma^2 = \frac{\vec{r} - \rho omega}{\vec{r} - \rho omega}$$

$$= \frac{(X_1 - \overline{X})^2 + (X_2 - \overline{X})^2 + \cdots + (X_N - \overline{X})^2}{N-1}$$

• Excelでは、関数VARA(データ範囲)を使って求める。

(参考)推測統計の考え方

- <u>観測データを、母集団から抽出した標本(サンプル)</u> と考えて、統計量の算定を行い、母集団の特性を推測 し、検証する。
 - (例)任意に抽出したN人(標本)の身長を計測して、日本人 全体(母集団)の身長の平均と分散を推定する。



N-1で割った「標本分散」の特徴

・ 母集団の「真の分散」を、統計的手法で「推定」するときに N-1で割った「標本分散」を使うのは、以下のような特徴が あるため。

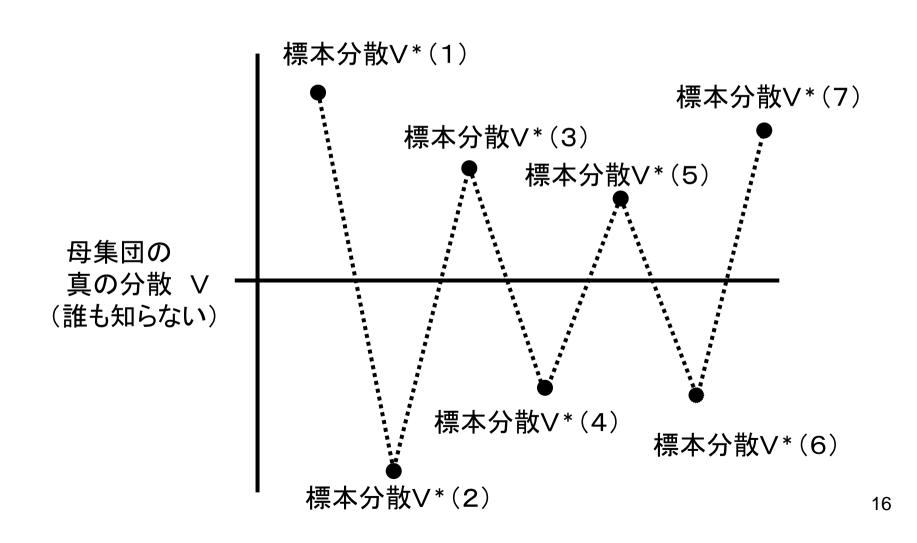
(一致性)

「標本分散」は、Nが大きくなると、母集団の「真の分散」に限りなく近づく

(不偏性)

・「標本分散」は、母集団の「真の分散」の偏りのない推定 値となることが知られている

標本分散(V*)を、標本を変えて繰り返し計算すると、 真の分散を中心にして偏りなく分布する(不偏性)



講義の中で、VaRを計測する際に使う 分散、標準偏差は、推測統計の立場

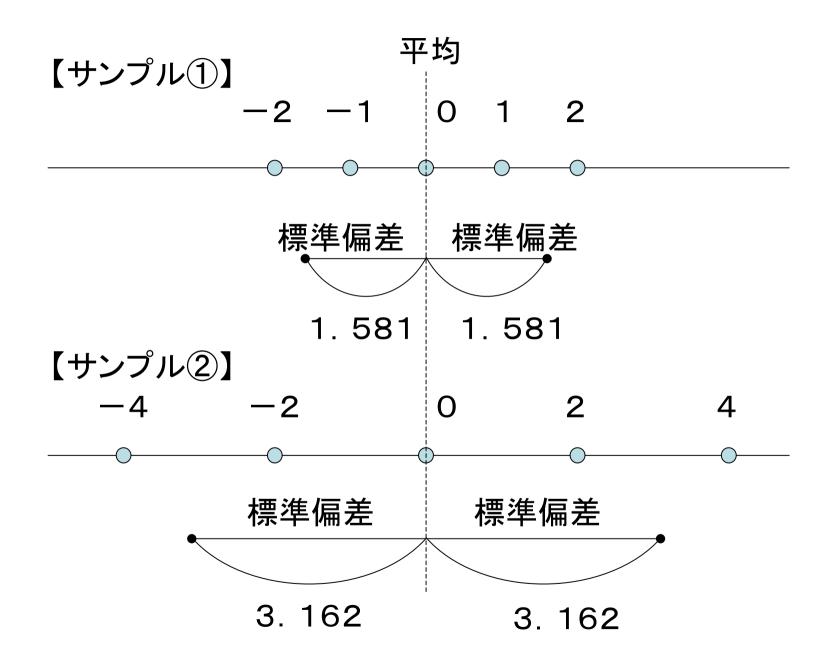
から定義したもの(N-1 で割ったもの) です。

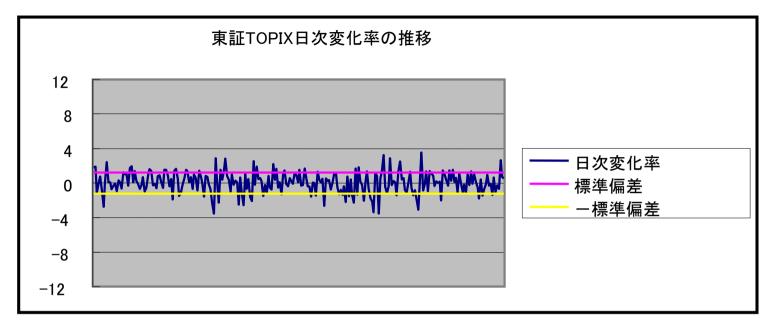
(3)標準偏差(推測統計の立場で記載)

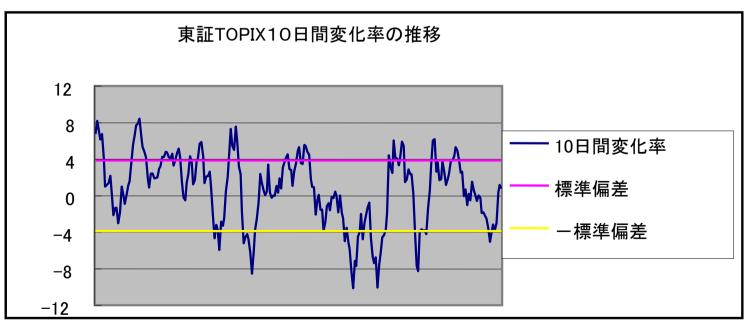
- 標準偏差は、観測データセットの「バラツキ」を示す指標の1つ。分散の平方根(ルート)をとって定義する。
 - ー 標準偏差の「単位」は、データの持つ「単位」と同じ。

$$\sigma = \sqrt{\frac{\ddot{r} - \phi omega = rightarrow final fi$$

• Excelでは、関数STDEVA(データ範囲)を使って求める。







基本統計	Excel関	日次変化	10日 変化	
データ	COUN	250	250	
平	AVERAG	0.063	0.656	
分	VAR	1.540	14.966	
標準偏	STDEV	1.241	3.869	

- 平均をみると、日次変化率、10日間変化率とも<u>概ね</u> ゼロとなっている。
- 分散をみると、10日間変化率の分散は、日次変化率 の 分散の概ね10倍となっている。
- 標準偏差をみると、10日間変化率の標準偏差は、 日次変化率の標準偏差の概ね√10倍(=3.162倍) となっている。

株価・金利・為替等の変化率に関して

- ① その平均をゼロと仮定したり、
- ② T日間変化率の標準偏差は、日次変化率の標準偏差の√T倍と仮定して

市場VaRを計測することがある。

(4)パーセント点

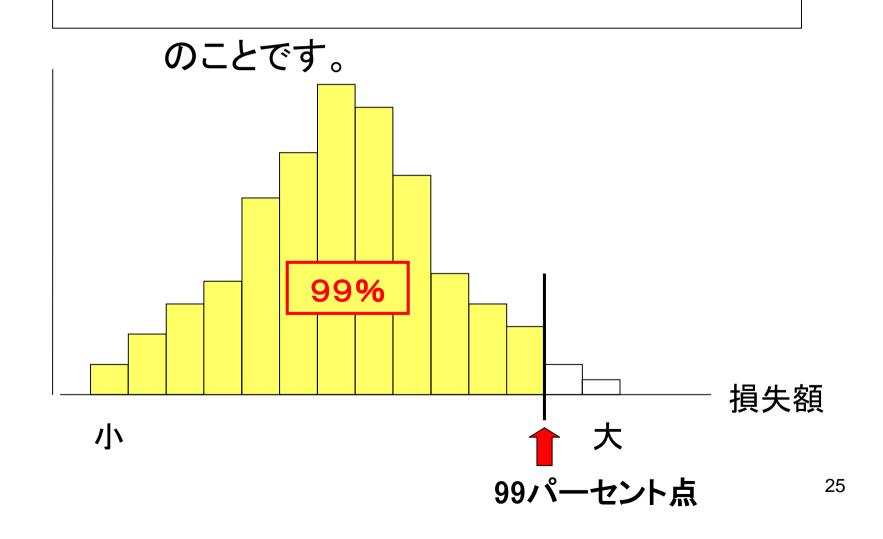
- パーセント点とは、観測データを小さい順に並べたときに、 その値よりも小さな値の割合が指定された割合(百分率) になるデータの値として定義される。
- 例えば、99パーセント点というのは、その値より小さな データの割合が99%となるデータの値のことを指す。
 - 50パーセント点のことを中央値(メジアン)と呼ぶ。
 - 25パーセント点を第1四分位点、75パーセント点を第3四分位点と呼ぶ。
- Excelでは、関数PERCENTILE(データ範囲,率)を使って求める。

23

(例) 1000個の損失データが観測されている場合、 99%点というのは、損失額を小さい順に並べて 990番目になるデータ値のこと。

	順 位	百分位	損失額	
	985 番目	98.5%	529	
	986 番目	98.6%	558	
	987 番目	98.7%	589	
	988 番目	98.8%	618	
	989 番目	98.9%	621	
Г	990 番目	99.0%	632	99%
	991 畨目	99.1%	654	•
	992 番目	99.2%	671	
	993 番目	99.3%	698	
	994 番目	99.4%	703	
	995 番目	99.5%	712	
	996 番目	99.6%	776	
	997 番目	99.7%	794	
	998 番目	99.8%	810	
	999 番目	99.9%	831	
	1000 番目	100.0%	869	

99%VaRは、文字通り、99パーセント点



2. 基本統計量(2変量)

- (1)散布図
- (2)共分散
- (3)相関係数
- (4)相関行列

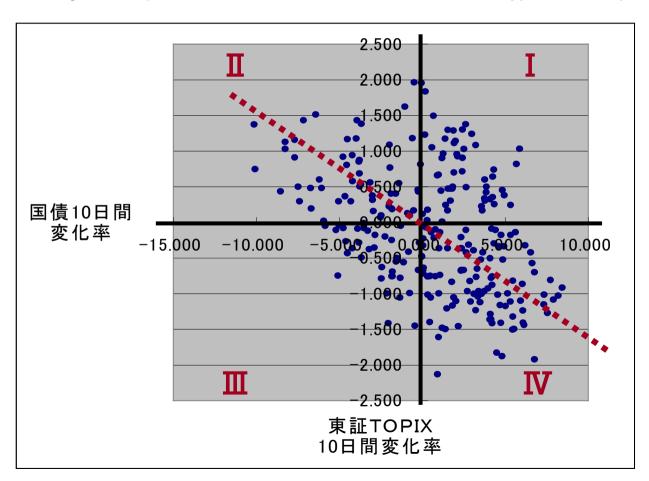
(1) 散布図

• 以下のような2変量の関係を調べるためには、 散布図を書くのが直感的に理解しやすい。

	東証TOPIX 10日間変化率 (X)	10年割引国債 10日間変化率 (Y)
200X/9/29	0.785	-0.098
200X/9/28	1.194	0.010
200X/9/27	0.319	0.177
200X/9/26	-2.994	0.315
200X/9/25	-3.783	0.688
200X/9/22	-3.139	0.560
200X/9/21	-3.894	-0.088
200X/9/20	-5.040	0.295
200X/9/19	-3.538	-0.010
200X/9/15	-2.474	0.098

株価変化率と国債価格変化率との関係

- ◆ 株価変化率がプラス(マイナス)のとき、国債価格変化率はマイナス(プラス)となる傾向がある。



(2) 共分散(推測統計の立場で記載)

- 共分散は、2つの変量(X、Y)の間の「直線的な比例 関係の強さ」を示す指標。
 - ー データの「偏差積和」を求めて、「データ数-1」で割る。
 - 共分散の「単位」は、Xの持つ「単位」掛ける Yの持つ「単位」。

$$= \frac{(X_1 - X)(Y_1 - Y) + (X_2 - X)(Y_2 - Y) + \dots + (X_N - X)(Y_N - Y)}{(X_1 - X)(X_1 - Y) + \dots + (X_N - X)(X_N - Y)}$$

N-1

- Excelでは、関数COVAR(データ範囲(X)、データ範囲(Y))を使って求める。
 - (注)Excelでは、データの偏差積和をN-1ではなく、Nで割って共分散を定義している(記述統計の立場で定義している)ため、別途、調整を行う必要がある。

偏差積和

$$= (X_1 - X)(Y_1 - Y) + (X_2 - X)(Y_2 - Y) + \cdots + (X_N - X)(Y_N - Y)$$

I、Ⅲのエリアに多く分布 ⇒ 偏差積和 > 0 : 正の相関

II、IVのエリアに多く分布 ⇒ 偏差積和 < O : 負の相関</p>

$$(X_{i}-\overline{X})(Y_{i}-\overline{Y})<0 \qquad \qquad II \qquad I \qquad (X_{i}-\overline{X})(Y_{i}-\overline{Y})>0 \\ (X_{i}-\overline{X})(Y_{i}-\overline{Y})>0 \qquad III \qquad (X_{i}-\overline{X})(Y_{i}-\overline{Y})<0 \\ \hline X_{i} \qquad (X_{i}-\overline{X})(Y_{i}-\overline{Y})<0 \\ \hline X \qquad 30$$

(3)相関係数

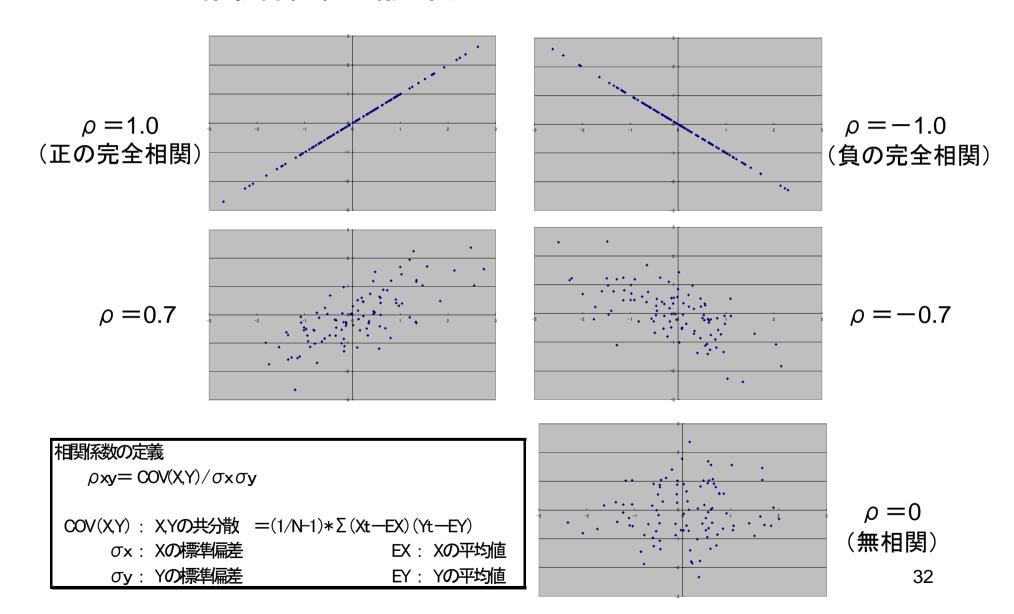
- 相関係数は、2つの変量(X、Y)間の「直線的な比例 関係の強さ」を示す指標。
- 共分散を、2つの標準偏差の積で割って定義する。
 - − 相関係数は−1~+1までの値をとる。「単位」を持たない無名数。
 - 相関係数の定義には、データ数Nが含まれていない(定義は1通りのみ)。

$$\rho(X,Y) = \frac{COV(X,Y)}{\sigma(X) \sigma(Y)}$$

$$= \frac{(X_1 - \overline{X})(Y_1 - \overline{Y}) + \dots + (X_N - \overline{X})(Y_N - \overline{Y})}{\sqrt{(X_1 - \overline{X})^2 + \dots + (X_N - \overline{X})^2} \sqrt{(Y_1 - \overline{Y})^2 + \dots + (Y_N - \overline{Y})^2}}$$

Excelでは、関数CORELL(データ範囲(X)、データ範囲(Y))を使って求める。

相関係数と散布図



(4)相関行列と分散共分散行列

太枠内が相関行列

	X ₁	X ₂	X ₃		X _N
X ₁	1	$\rho(X_1, X_2)$	$\rho(X_1, X_3)$		$\rho(X_1, X_N)$
X ₂	$\rho(X_2,X_1)$	1	$\rho(X_2, X_3)$		$\rho(X_2, X_N)$
Х ₃	ρ(X ₃ , X ₁)	$\rho(X_3, X_2)$	1		$\rho(X_1, X_2)$
÷		i	÷	**.	:
X _N	$\rho(X_N, X_1)$	$\rho(X_N, X_2)$	ρ (X _N , X ₃)	•••	1

 $\rho(X_i, X_i) = 1$: 同じ変量 (X_{ii}) 同士の相関は1

 $\rho(X_i, X_j) = \rho(X_j, X_i)$: 2つの変量 (X_i, X_j) の順序を変えて計算しても相関係数の値は同じ。 33

太枠内が分散共分散行列

	X ₁	X_2	X ₃	•••	X _N
X ₁	V_{X1}	$COV(X_1, X_2)$	$COV(X_1, X_3)$		$COV(X_1, X_N)$
X ₂	$COV(X_2, X_1)$	V _{X2}	$COV(X_2, X_3)$		$COV(X_2, X_N)$
X ₃	COV(X ₃ , X ₁)	COV(X ₃ , X ₂)	V_{X3}		$COV(X_1, X_2)$
÷	:	:	:	***	i i
X _N	COV(X _N , X ₁)	COV(X _N , X ₂)	COV(X _N , X ₃)	•••	V _{XN}

VaRの計測手法として、分散共分散法の説明をします。

VaRの計測において、分散共分散行列、 相関行列が重要な働きをします。

Ⅲ. VaRの計測と検証より

分散共分散法(デルタ法)による計算例② - リスクファクターが2つのケース

VaRの計算 【ポートフォリオ】	エシート	分散共分散	な法(デルタ法)		
株式投信 10年割引国債		億円 億円	単独VaR 株式投信 9.00 = 割引国債 1.99	標準偏差 ×信頼係数 = 3.8686 2.33 0.8568 2.33	×感応度 100 100
保有期間 信頼水準	99.00	日 %	ポートVaR 単純合算 10.99 (1)		
観測データ	250	日	相関考慮後 8.35 ②	② ①>②:ポートフォリオ効果	
	東証TOPIX 10日間変化率	10年割引国債10日間変化率	投信VaR 国債VaR 9.00 1.99	相関行列 1 -0.4233	9.00 投信VaR
2006/9/29	0.785	-0.098	5100	-0.4233 1	1.99 国債VaR
2006/9/28	1.194	0.010		\downarrow	
2006/9/27	0.319	0.177		行列計算式	
2006/9/26		0.315		8.1560 -1.8162	9.00
2006/9/25	-3.783	0.688			1.99
2006/9/22	-3.139	0.560		_	↓行列計算式
2006/9/21	-3.894	-0.088		VaR^2 :	69.78
2006/9/20	-5.040	0.295		VaR :	8.35
2006/9/19		-0.010			
2006/9/15	-2.474	0.098	投信感応度 国債感応度	公 数	
2006/9/14		-0.197	100.00 100.00	14.96626 -1.3938	100.00 投信感応度
2006/9/13		0.187		-1.3938 0.7364709	100.00 国債感応度
2006/9/12	-1.875	0.403		1 1	
2006/9/11	-0.235	0.433		行列計算式	
2006/9/8	0.007	0.118		1357.2481 -65.7303	100.00
2006/9/7	-0.591	1.179			100.00
2006/9/6		1.228			
2006/9/5		1.051		ポート分散:	12.92 (単位調整)
2006/9/4	1.534	1.296		ポート標準偏差:	3.59
2006/9/1	-0.495	1.964		信頼係数	2.33
2006/8/31	0.184	1.837		ポートVaR	8.36

3. 確率変数と確率分布

- (1)確率変数
- (2)確率分布
 - 一確率密度関数、分布関数
- (3)様々な確率分布
 - 一様分布、正規分布、対数正規分布 ポワソン分布、2項分布
- (4)確率変数の独立

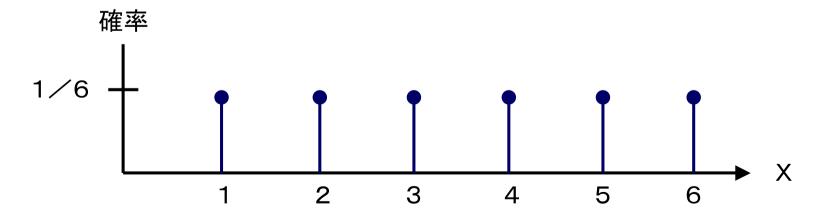
(1)確率変数

• 予め定まった確率にしたがって値が変動する数のこと を「確率変数」という

(例)サイコロを振ったときに出る目の数

― 離散的な確率変数

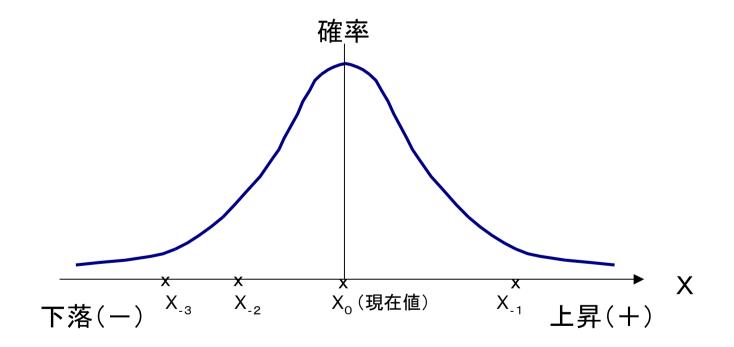
サイコロの目(X)	1	2	3	4	5	6
確率	1/6	1/6	1/6	1/6	1/6	1/6



株価、金利、為替等の変化率を、

「確率変数」として捉えることも可能。

― 連続的な確率変数



) その他の確率変数

- VaRを250回計測して、VaRを超える損失が 発生する回数
- 事件・事故発生に伴う損失の発生額(1回当たり)
- 事件・事故の年間発生件数
- 個別企業の信用状態

(2)確率分布

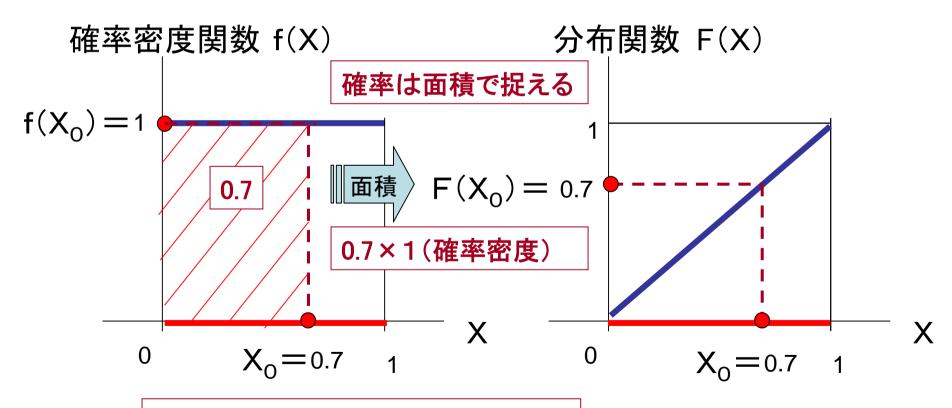
- ・ 確率分布を表わすとき、2種類の関数がある。
- ① 確率密度関数 確率変数(X)が「ある値」をとる確率(確率密度) を表わす関数
- ② 分布関数(累積確率密度関数) 確率変数(X)が「ある値以下」になる確率を表わ す関数

(例)数直線上で、Oから1までの値をランダムにとる 確率変数(X)を考える。

Xは 0~1の間で無限の値をとる可能性がある

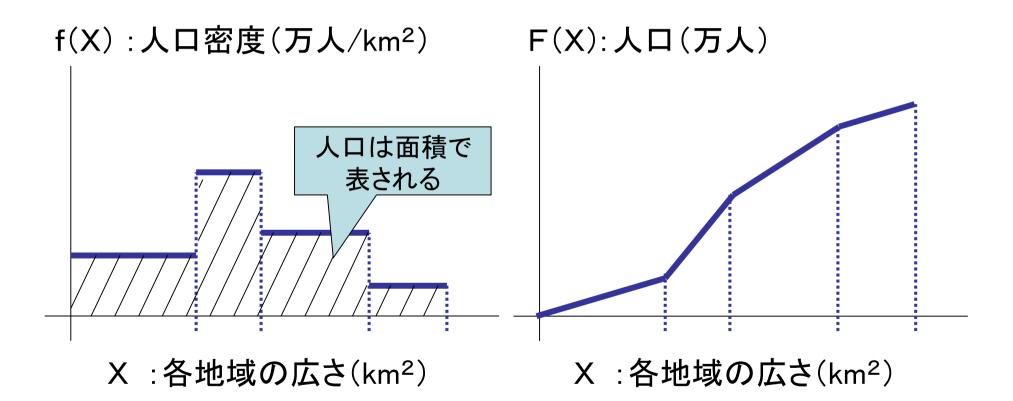
Xが 0.7の値をとる確率はゼロ

Xが 0.7以下の値をとる確率は 0.7(斜線部の面積)

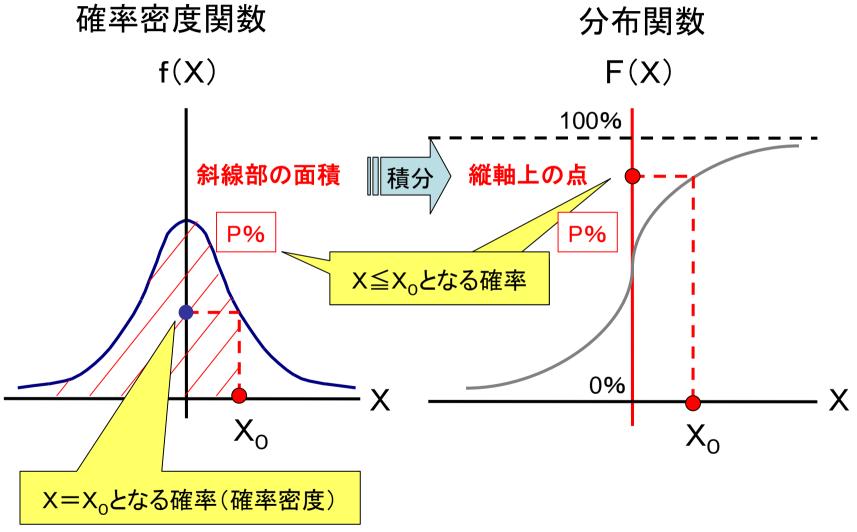


Xが 0.7の値をとる「確率密度」は 1

(参考)人口と人口密度

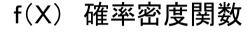


• より一般的に概念図で示すと

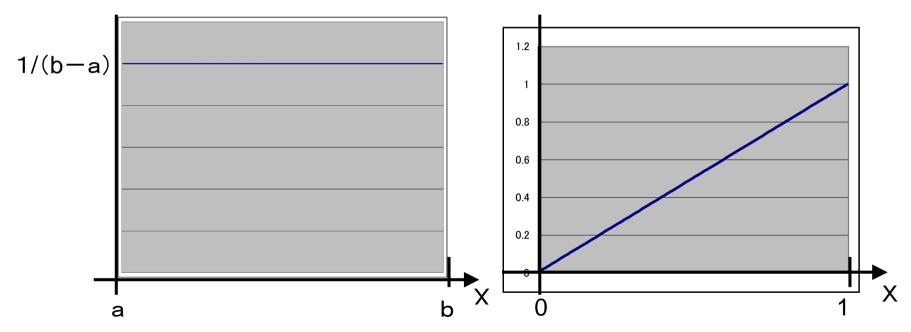


(3)様々な確率分布

一様分布:ある区間の中の値が同じ確率で生起する分布。



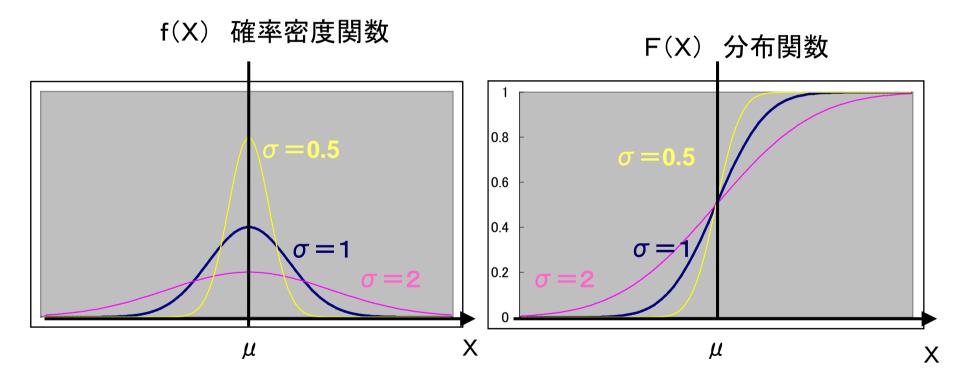
F(X) 分布関数



一様分布にしたがう乱数(一様乱数)は、Excel関数RAND()
 を使って生成することができる。

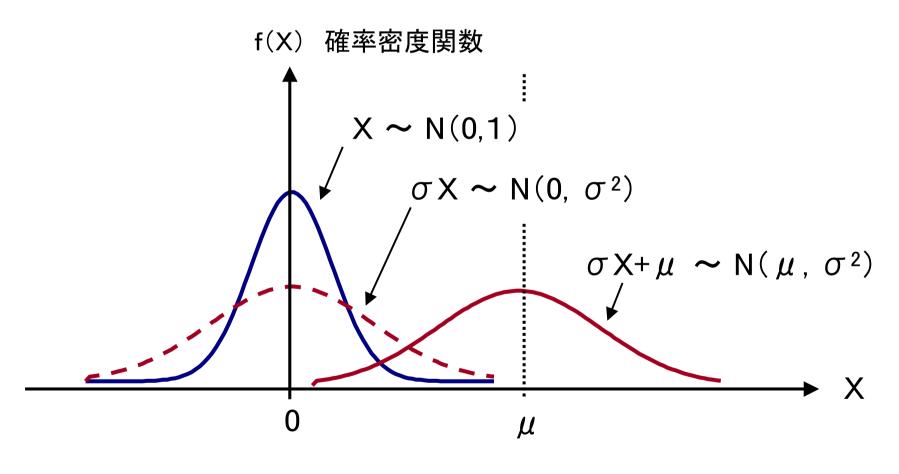
正規分布:左右対称の釣鐘型をした確率分布。

平均(μ)、標準偏差(σ)を与えると分布の EXCEL関数 N**が状が**ない。 関数形式 β)と表す。

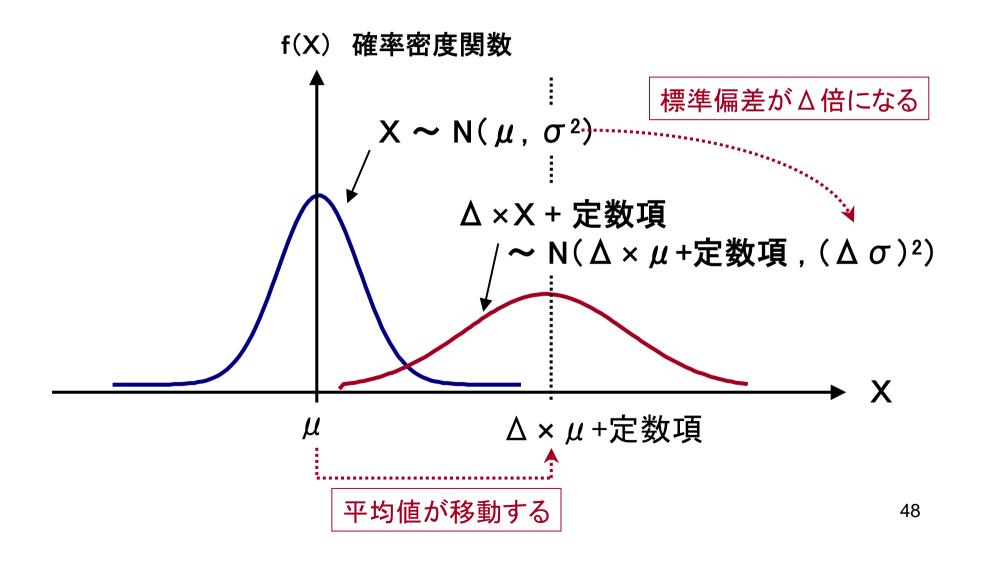


・ 平均(μ)=O、標準偏差(σ)=1の正規分布を標準正規分布と言い、N(O,1)と表す。

確率変数 X が 標準正規分布にしたがうとき 確率変数 $\sigma X + \mu$ は 正規分布にしたがう。



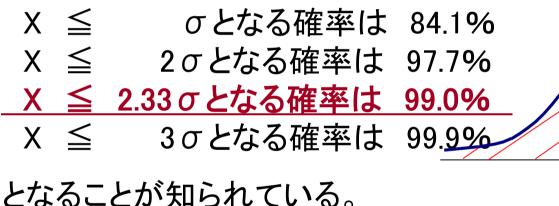
確率変数 X が 正規分布にしたがうとき 確率変数 $\Delta \times X + 定数項$ は 正規分布にしたがう。



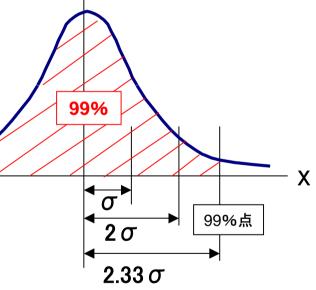
正規分布の特徴

平均からどれだけ離れているか(標準偏差の何倍か)という情報から、X以下の値をとる確率が分かる。

• 例えば、XがN(0, σ²)の正規分布にしたがって生起するとき



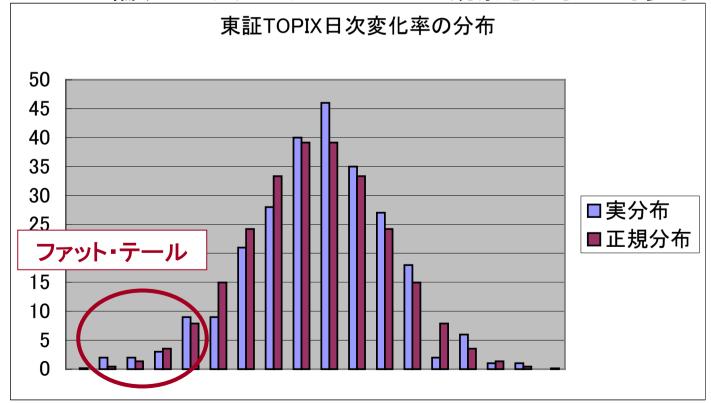
- このとき、σの前に付いている係数を「信頼係数」という。
- 正規分布は、Xが「信頼係数」×σ以下となる確率が分かる 便利な確率分布の1つ。



株価、金利、為替等の変化率は、正規分布にしたがうと 想定されることが多い。

ー しかし、実際の分布をみると、正規分布と比較して、歪み、 (注)

偏りやファット・テール (注) が観察でるでをできない。



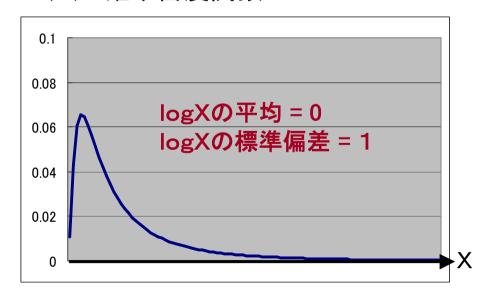
対数正規分布:

左右非対象、片側に裾野が長いファットテールな分布。

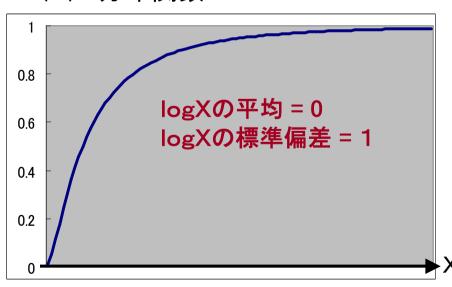
変数Xの対数値(logX)が正規分布にしたがうとき、変数Xは対数正規分布にしたがう、と言う。 logXの平均(μ)、logXの標準偏差(σ)を与えると分布の形状が決まる。

EXCEL関数 LOGNORMDIST(X, μ , σ)

f(X) 確率密度関数



F(X) 分布関数



_____ ポワソン分布:

所与の領域、あるいは、所与の時間内において、O回、1回、 2回、3回・・・と発生する事象が、ちょうどK回発生する確率を 示す。

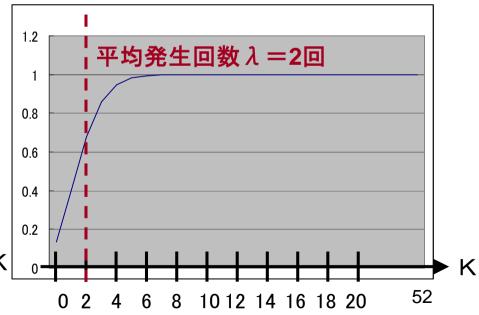
平均発生回数(λ回)を与えると分布の形状が決まる。

EXCEL関数 POISSON(K, λ , 関数形式)

f(K) 確率密度関数

0.3 0.25 0.1 0.1 0.05 0 2 4 6 8 10 12 14 16 18 20

F(K) 分布関数



講義(Ⅲ.)の中で、

市場VaRを計測(分散共分散法)するとき 正規分布を利用する例をあげます。

信用VaRを計測(モンテカルロ・シミュレーション法)するとき、正規分布を利用する例をあげます。

オペリスクVaRを計測(モンテカルロ・シミュレーション法)するとき、対数正規分布とポワソン分布を利用する例をあげます。

実務的には、フィットのよい別の確率分布 を利用することもあります。

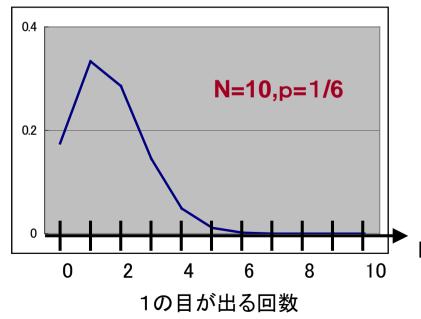
2項分布:

結果が2通りある試行(実験)をN回繰り返したとき、片方の 結果が起こる回数(K)の確率分布。

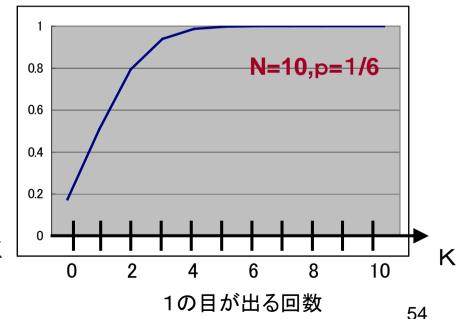
試行回数(N回)と、片方の結果が起きる確率(p)を与えると 分布の形状が決まる。

(例)サイコロを10回振って 1の目が出る回数(K)

f(K) 確率密度関数



F(K) 分布関数



ある事象が起きる確率は p。 N回の試行のうち、K回は ある事象が起きる。 ある事象が起きない確率は1-p。 N回の試行のうち、N-K回は ある事象は起きない。

2項分布(Excel関数)

BINOMDIST(K, N, p, false) = ${}_{N}C_{K}p^{K}(1-p)^{N-K}$

N回の試行の中から ある事象が起きるK回の試行を 取り出す組み合わせ

$$_{N}C_{K} = \frac{N \times (N-1) \times \cdots \times (N-K+1)}{K \times (K-1) \times \cdots \times 2 \times 1}$$

<u>(例)サイコロを10回振ったときに2回、1の目が出る確率</u>

BINOMDIST(2, 10, 1/6, false)

$$= {}_{10}C_2 (1/6)^2 (5/6)^{10-2} = \frac{10 \times 9}{2 \times 1} \times (1/6)^2 (5/6)^8$$

講義の中で、

VaR計測モデルのバックテストを行なうとき、2項分布を利用します。

(4)確率変数の独立

【定義】

確率変数 X₁、X₂ が互いに影響されず、
 それぞれの確率分布にしたがって値をとるとき、

確率変数 X₁、X₂ は、互いに「独立」であるという。

(例)サイコロを振ったときに出る目の数

1回目: $X_1 = 1$ 、2回目: $X_2 = 1$

3回目: X₃ = ?

サイコロの目(X ₃)	1	2	ფ	4	5	6
確率	1/6	1/6	1/6	1/6	1/6	1/6

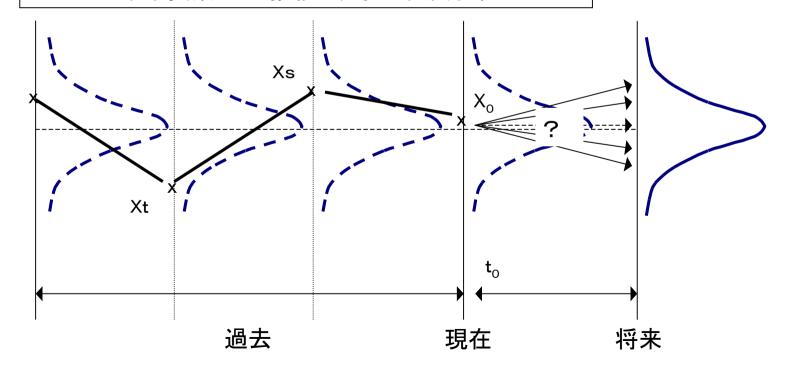
- 2回続けて1の目が出ても、3回目の結果には影響を及ぼさない。
- 3回目は、いずれの目が出る確率も1/6。

株価、金利、為替等の変化について

互いに独立かつ同一の確率分布にしたがって変動している、と考えられることが多い。

⇒ i.i.d.の想定

確率変数 X の推移と、その確率分布



【独立の定義】

確率変数 X_t、X_sの確率関数に関して、以下の式が成り立つとき、確率変数 X_t、X_sは互いに「独立」と言う

$$P(X_t=a,X_s=b) = P(X_t=a)P(X_s=b)$$

【i. i. d. の定義】

確率変数 X_t、X_sについて、以下の2つの条件を満たすとき、

確率変数 X_t、X_sは互いに「i. i. d. 」(注)であると言う。

- (注)independently and identically distributed
- ①確率変数 X_t、X_sは互いに独立である。
- ②確率変数 X_t、X_sは同一の確率分布にしたがう。

【定理】

- 確率変数 X₁、X₂ が互いに「独立」のとき、以下のことが 成り立つ。
- 確立変数 X₁X₂ の期待値は、それぞれの確率変数の 期待値の積になる。

$$E(X_1X_2) = E(X_1)E(X_2)$$

② 確率変数 X_1+X_2 の分散は、それぞれの確率変数の分散の和に等しい。

$$V(X_1+X_2)=V(X_1)+V(X_2)$$

③ 確率変数 X₁ と X₂ は無相関である。

$$\rho(X_1, X_2) = 0$$

(証明省略)

【ルートT倍ルール】

日次ベースの対数変化率 or 変化幅を X_1 、 X_2 、 X_3 、・・・、 X_T とすると、

T日間の対数変化率 or 変化幅は $X_1+X_2+X_3+\cdots+X_T$ と表される。

各期のリスクファクター $(X_1,X_2,X_3,\cdots X_T)$ が、互いに独立かつ同一の確率分布にしたがうと想定する。 【i.i.dの定義】

日次ベースの対数変化率 or 変化幅 X_1 、 X_2 、 X_3 、・・・、 X_T の 分散を σ^2

<u>標準偏差を σ とすると、</u>

T日間の対数変化率 or 変化幅 $X_1+X_2+X_3+\cdots+X_T$ の 分散は $T\times \sigma^2$ 標準偏差は $\sqrt{T}\times \sigma$ となる。

(参考)対数変化率の定義

日次対数変化率

$$\log \frac{X_{t}}{X_{t-1}} = \frac{X_{t} - X_{t-1}}{X_{t-1}} = \frac{X_{t}}{X_{t-1}} - 1$$

10日間対数変化率

$$\log \frac{X_{t}}{X_{t-10}} = \frac{X_{t} - X_{t-10}}{X_{t-10}} = \frac{X_{t}}{X_{t-10}} - 1$$

- 対数変化率は、通常の変化率と近似的に等しいことが知られている。
- log(自然対数)は、Excelでは関数LN(・)で与えられる。

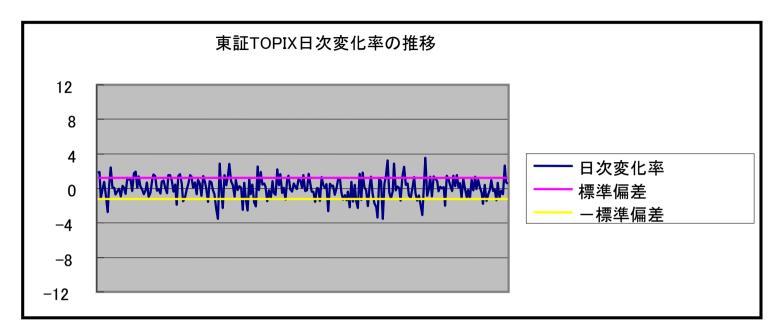
対数変化率の特徴

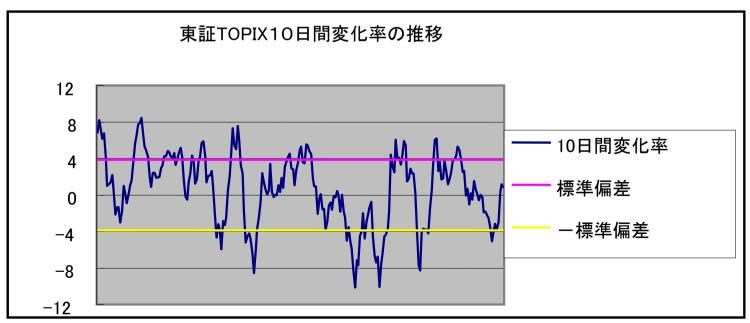
- 対数変化率は、同率の低下、上昇により、元の値に戻る。
- 10日間対数変化率は、日次対数変化率(10日分)の和となる。

	変化率(日次)	対数変化率(日次)
100	0.0101	0.0101
99	-0.0100	-0.0101
100	0.0526	0.0513
95	-0.0500	-0.0513
100	0.1111	0.1054
90	-0.1000	-0.1054
100	0.2500	0.2231
80	-0.2000	-0.2231
100	0.4286	0.3567
70	-0.3000	-0.3567
100	0.6667	0.5108
60	-0.4000	-0.5108
100	1.0000	0.6931
50	-0.5000	-0.6931
100	_	_

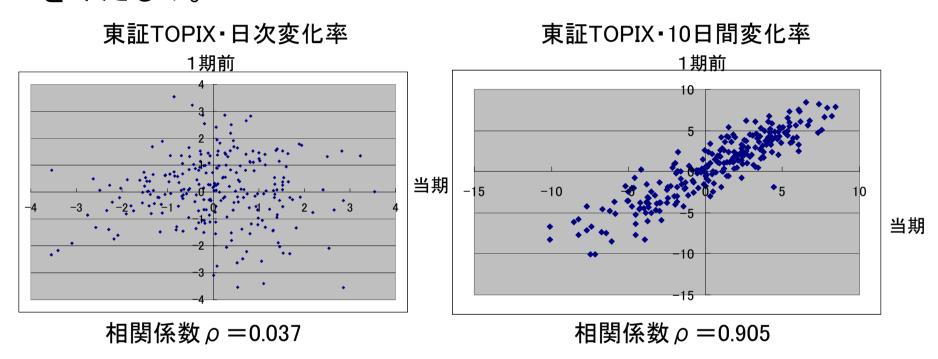
		対数変化率(日次)
X10	100	0.2877
X9	75	-0.4700
X8	120	1.3863
X7	30	-0.6931
X6	60	-0.9163
X5	150	0.5108
X4	90	1.0986
Х3	30	-0.6931
X2	60	-0.2877
X1	80	-0.1178
X0	90	_
$\Sigma \log(X_t/X_{t-1})$		0.1054

	対数変化率(10日間)
log(X10/X0)	0.1054





 下図は、過去1年間のデータをもとに、東証TOPIX・ 変化率と、1期前の変化率との相関関係(自己相関) をみたもの。



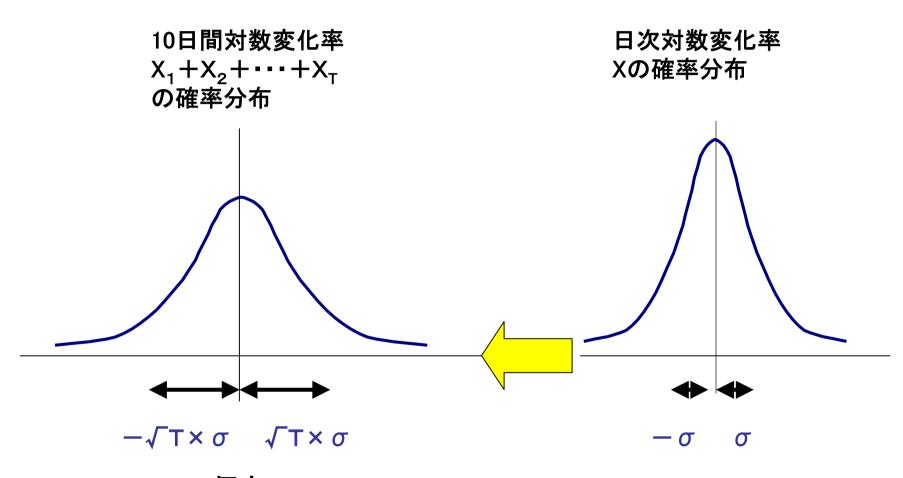
- 一 日次変化率の自己相関は弱いが、10日間変化率の自己相関は強いことが観察される。
- 統計的に厳密に検証すると、多くの時系列データが(日次変化率でみても10日間変化率でみても)独立とは言えないことが多い。

66

基本統計量	Excel関数	日次 対数変化率	10日間 対数変化率
データ数	COUNT	250	250
平均	AVERAGE	0.063	0.656
分散	VARA	1.540	14.966
標準偏差	STDEVA	1.241	3.869

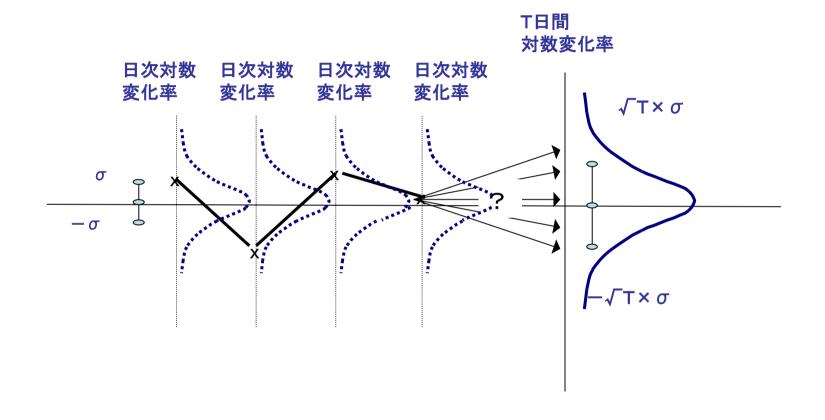
- 分散をみると、10日間対数変化率の分散は、日次対数 変化率の分散の概ね10倍となっている。
- 標準偏差をみると、10日間対数変化率の標準偏差は、 日次対数変化率の標準偏差の概ね√10倍(=3.162)
 倍)となっている。

ルートT倍ルール



<u>仮定</u> リスクファクターの確率分布は i. i. d.

<u>ルートT倍ルール</u>



<u>仮定</u> リスクファクターの確率分布は i. i. d.

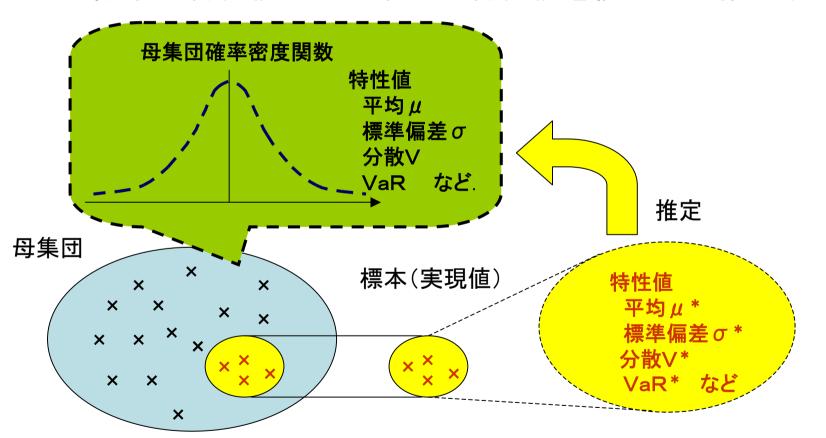
4. 推定と検定

(1) 推定

(2) 検定

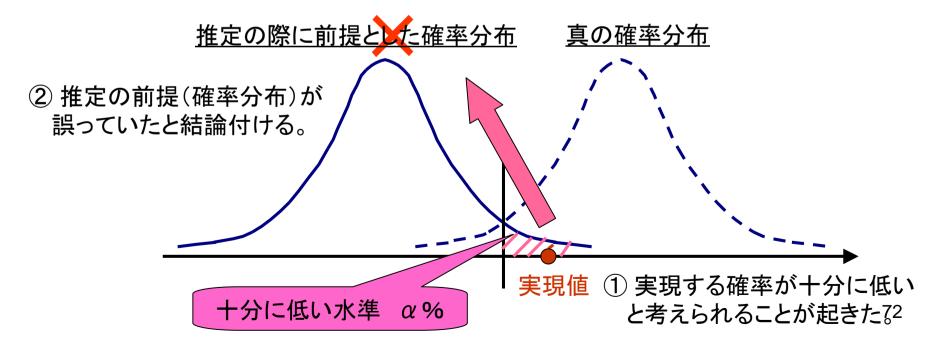
(1)推定

- 母集団の確率分布、特性値は、誰にも分からない。
- 標本の特性値から母集団の特性値を統計的に推測する。



(2) 検定

一定の確率分布を前提にして推定した値について、 その値をとる確率が十分に低いとき、 「偶然、珍しいことが起きた」と考えるのではなく、 「推定の際に置いた前提が誤っていた」 と結論付ける。



(設問)

1の目がでやすいサイコロがあります。 サイコロを割ったり、X線透視などをせず、 サイコロを振るだけで、このサイコロが 「イカサマ」かどうかを決めたいと思います。

あなたは、このサイコロを600回振って、 何回、1の目が出たら、「イカサマ」だと判断しますか?

120回で「イカサマ」だと判断しますか?

150回で「イカサマ」だと判断しますか?

200回で「イカサマ」だと判断しますか?

300回で「イカサマ」だと判断しますか?

400回で「イカサマ」だと判断しますか?

(例)1の目がでやすい「イカサマ・サイコロ」の 見付け方

このサイコロを振ったとき、1の目が出る確率は 1/6 である。

• このサイコロを600回振ったとき、1の目が?回以上発生した。

• このサイコロを振ったとき、1の目が出る確率が 1/6 だとすると、600回のうち?回以上、1の目が出る確率は十分に低い(例えば0.1%未満)ことが分かる。

• このサイコロを振ったとき、1の目が出る確率は 1/6 とは 言えない。

N回の観測で、K回、1の目が出る確率 2項分布 NC p^K(1-p)^{N-K}

N=600回 p=1/6 1-p=5/6

KП	確率	確率	K回以上
0	0.000%	100.000%	0回以上
100	4.264%	60.278%	100回以上
110	2.904%	20.634%	110回以上
120	0.652%	3.051%	120回以上
130	0.052%	0.184%	130回以上
140	0.002%	0.004%	140回以上
150	0.000%	0.000%	150回以上
160	0.000%	0.000%	160回以上
170	0.000%	0.000%	170回以上
180	0.000%	0.000%	180回以上
190	0.000%	0.000%	190回以上
200	0.000%	0.000%	200回以上
300	0.000%	0.000%	300回以上
400	0.000%	0.000%	400回以上
500	0.000%	0.000%	500回以上
600	0.000%	0.000%	600同以上

検定の一般的手続き

- ①「帰無仮説」を立てる。
- ②「帰無仮説」が「真」(true)であるという仮定の下に「検定統計量」を決定する。
 - ― ただし「検定統計量の確率分布は既知とする。
- ③試行や標本(サンプル)の抽出により、「検定統計量」を計算する。
- ④「検定統計量」の実現値(計算値)がどの程度の確率 でおき得ることかを確認する。
- ⑤「検定統計量」の実現値(計算値)が十分に低い確率 (「有意水準」以下)でしか置きえないとき、「帰無仮説」 を棄却する。

2種類の過誤

- 「検定」では、次の2通りの「過誤」(エラー)が起きる可能性がある。
- したがって、バックテストの結果も「過誤」(エラー)を伴っている可能性がある点、注意を要する。

第1種の過誤(エラー)

本当は帰無仮説が正しいのに、

検定の結果、

帰無仮説が誤っていると結論付けてしまう。

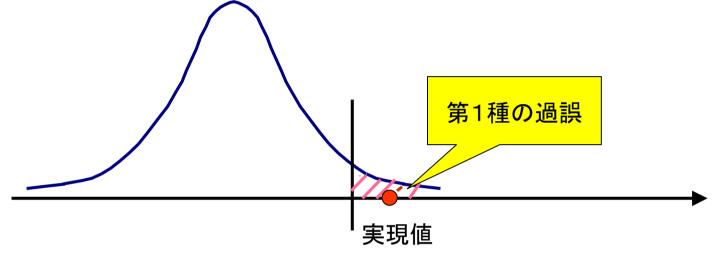
第2種の過誤(エラー)

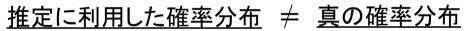
本当は帰無仮説が正しくないのに、

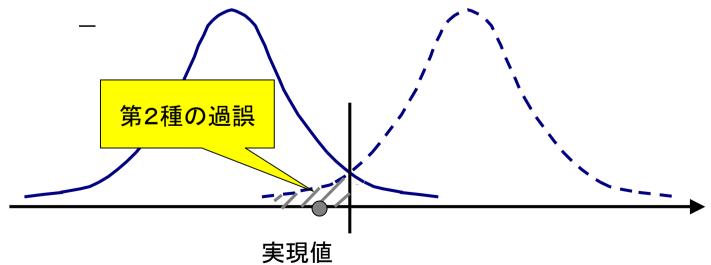
検定の結果、

帰無仮説が正しいと結論付けてしまう。

推定に利用した確率分布 = 真の確率分布







VaR計測モデルのバックテストは 「検定」の考え方に基づいて行います。

参考文献•資料

「イラスト・図解 確率・統計のしくみが分かる本」 長谷川勝也 著 技術評論社

「初等統計学」 P.G.ホーエル 著 浅井晃、村上正康 訳 培風館

日本銀行「市場リスク管理の基礎」セミナー 補足1「確率・統計の基礎」 金融高度化センター 碓井茂樹